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Abstract - This study investigates the relationship between fuel consumption and fuel properties, including vehicle type, cetane 

number, density, viscosity, initial boiling point, final boiling point, and flash point. A linear regression analysis was conducted 

to identify the most significant predictors of fuel consumption. The results show that vehicle type, cetane number, and initial 

boiling point are the most significant predictors of fuel consumption. The study also found that the interaction between vehicle 

type and initial boiling point significantly impacts fuel consumption. This study's findings can inform the development of more 

efficient and environmentally friendly vehicles. 

Keywords - Fuel consumption, Exploratory data analysis, Cross Validation, Linear regression, Multivariate Analysis, 

Regression Analysis.  

1. Introduction 
The transportation sector significantly contributes to 

greenhouse gas emissions, with heavy-duty vehicles being a 

major source of emissions. With the advancement of 

civilization and the rise in population, there is a heavy set of 

vehicles that cause pollution. This pollution does have an 

impact on humans, birds, and other living beings. To ensure 

safety and sustenance, this study tries to identify the specific 

fuel properties that impact fuel consumption and minimizing 

it. Most research focuses on reducing emissions. However, 

based on the understanding of the data, it is noticed that the 

impact of fuel properties, such as cetane number, density, 

viscosity, boiling point, flash point, aromatics, etc., on engine 

efficiency, thereby affecting fuel consumption. This study 

uses the fuel consumption dataset to investigate the 

relationship between fuel consumption and fuel properties in 

heavy-duty vehicles [1]. The results will provide insights into 

the impact of fuel properties on fuel consumption and provide 

strategies to reduce fuel consumption and emissions in this 

sector. Various methodologies investigated the relationship 

between fuel consumption and fuel properties. The model 

specification was based on a comprehensive analysis of all 

attributes, including cetane number, density, viscosity, engine 

type, load capacity, driving conditions, and fuel properties. 

The model was estimated using Ordinary Least Squares (OLS) 

regression, and the results were checked for adequacy using 

plots and diagnostics. Model transformations were applied to 

address potential issues with normality and homoscedasticity, 

including square root and log transformations. The 

introduction of quadratic terms was also considered to account 

for potential non-linear relationships. The best regressors were 

selected using all possible regressions and stepwise 

regression, and the variance influencing factor (VIF) was 

checked to identify potential multicollinearity issues. The 

model was validated using multiple techniques, including 

redoing regressions with new possible models and analyzing 

the results. Based on the results obtained, the best model has 

been selected. For this selected model, adequacy and 

validations were verified using plots and diagnostics. The 

main goal of this study is to investigate the relationship 

between fuel consumption and fuel properties and identify the 

primary factor that influences fuel consumption. This will help 

the environment be pollution-free, aid manufacturers in 

developing better vehicles that reduce fuel consumption and 

inform strategies to reduce fuel consumption and emissions. 

By employing a range of methodologies, including model 

specification, parameter estimation, model adequacy 

checking, model transformation, and model validation, this 

study aims to provide a comprehensive understanding of the 

relationship between fuel consumption and fuel properties in 

heavy-duty vehicles. 

2. Exploratory Data Analysis (EDA) 
2.1. Dataset 

The dataset used for this analysis is a collection of several 

observations of fuel consumption and related attributes for 

heavy-duty vehicles. This data was obtained from a research 

study on polycyclic aromatic hydrocarbons (PAHs) emissions 

from heavy-duty diesel vehicles [1]. In this prior research 

document, 47 variables, fuel parameters, and PAH contents 
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were analyzed, which resulted in a data matrix of 376 

observations. With the application of Principal Component 

Analysis (PCA), it was found that the fuel aromatic contents 

and initial and final distillation boiling points affect fuel PAH 

contents. However, at this point, there is little to no mention 

of other fuel properties affecting fuel PAH.  Therefore, a 

subset of fuel attributes present in the given dataset is used for 

this study [6]  

Table. 1 Variables & their description 

Attribute Description 

𝑦 Fuel consumption (in g/km) 

𝑥1 
Vehicle type 

 (binary: 0 = bus, 1 = truck) 

𝑥2 Cetane number 

𝑥3 Density (g/L, 15 °C) 

𝑥4 Viscosity (KV, 40 °C) 

𝑥5 Initial boiling point (degrees C) 

𝑥6 Final boiling point (degrees C) 

𝑥7 Flash point (degrees C) 

𝑥8 Total aromatics (percent) 

2.2. Descriptive Analysis 

2.2.1. Target Variable:  Fuel consumption (y) 

Based on this EDA, fuel consumption is a continuous 

variable with a slightly skewed distribution. Most data points 

are concentrated around the mean, with a few outliers at the 

higher end of the range. There is a moderate positive 

correlation between fuel consumption and cetane number and 

viscosity and a moderate negative correlation with density and 

flash point. 

 
Fig. 1 Distribution of target variable fuel consumption 

2.2.2. Vehicle Type Vs Fuel consumption 

The vehicle type variable (𝑥1), is categorical, either 0 or 

1. 0 represents a bus, and 1 represents a truck. In the current 

dataset, both have equal numbers of observations. The 

correlation coefficient with the target variable y is -0.2345, 

which shows a weak relationship between them. 

2.2.3. Cetane Number Vs Fuel consumption 

The variable x2, the Cetane number, has a slightly skewed 

distribution with a mean of 49.812 and a median of 49.15, 

indicating a minor skew in data. The correlation coefficient 

with y is -0.07, representing almost no relationship with the 

target variable. 

2.2.4. Density Vs Fuel consumption 

The variable x3, density, has a slightly skewed 

distribution with a mean of 820.412 and a median of 817.25. 

The correlation coefficient with y is 0.162. It appears to be a 

little dependency on the target variable y. 

2.2.5. Viscosity Vs Fuel consumption 

The variable x4, viscosity, has a slightly skewed 

distribution with a mean of 1.98, a median of 2.10, and 75% 

of data have values more than 2.14. The correlation coefficient 

with y is -0.04, showing a negligible relationship with y.  

2.2.6. Initial Boiling Point Vs Fuel consumption 

The variable x5, Initial boiling point, has a bit of skewed 

distribution with a mean of 195.62 and a median of 185. The 

correlation coefficient with y is -0.591. This implies a strong 

reverse relationship between x5 and y. 

2.2.7. Final Boiling Point Vs Fuel consumption 

The variable x6, the final boiling point, has a slightly left-

skewed distribution with a mean of 296.12 and a median of 

299. Mean value is slightly less than the median, so the data is 

left skewed. The correlation coefficient with y is 0.588. This 

suggests that variable x6 has a strong positive relationship 

with target variable y. 

2.2.8. Flash Point Vs Fuel consumption 

The variable x7, Flash point, has a slightly skewed 

distribution with a mean of 76.87 and a median of 75. The 

correlation coefficient with y is 0.507 showing a positive 

relationship with y.  

2.2.9. Total Aromatics Vs Fuel consumption 

The variable x8, Total aromatics, has a left-skewed 

distribution with a mean of 18.8 and a median of 20.25. The 

correlation coefficient with y is 0.505, which shows a strong 

positive relationship with variable y. 

2.2.10. Vehicle Type Vs Initial Boiling Point 

Vehicle type and initial boiling point x5 seem evenly 

distributed, with a few missing data in between. At this point, 
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it’s hard to guess how the initial boiling point and the vehicle 

types are related unless more domain knowledge is gathered 

the correlation analysis revealed a strong positive relationship 

between density and viscosity, with a coefficient of 0.82, 

indicating that as one increases, the other tends to increase. 

Furthermore, moderate positive correlations were found 

between total aromatics and density and between total 

aromatics and final boiling point, suggesting that these 

variables are related and may be used to predict each other. 

Additionally, the negative correlation between the initial and 

final boiling points implies that as the initial boiling point 

increases, the final boiling point tends to decrease, which may 

be due to the chemical composition of the substance or the 

manufacturing process used. Overall, these correlations 

provide valuable insights into the relationships between these 

variables and can be used to improve the understanding of the 

underlying physical and chemical properties of the substances 

being studied. 

Fig. 2 Distribution of initial boiling point for both vehicle types 

 
Fig. 3 Correlation matrix 

3. Methodology  
The goal is to build a predictive model that accurately 

predicts fuel consumption based on the given dataset. To 

achieve this, a model-building pipeline is built that iteratively 

adds and refines the regressors to achieve the best possible 

model.  

3.1. K-Fold Cross Validation 

The cross-validation technique measures the model 

against unseen data while dealing with a defined dataset. This 

helps avoid overfitting and gives an insight into behaving 

against unseen datasets. In general, 20% of data is set aside for 

final model validation, and the remaining 80% of data is set to 

undergo cross-validation. In a K-fold cross-validation method, 

one-fold is set aside for validation, and the remaining K-1 fold 

of data is used for training. Stratification (binning in 

regression) ensures data in each fold is evenly distributed. In 

each iteration, the sum model is tested. The overall model’s 

performance is found by taking the average of the metrics, 

such as 𝑅2and MSE. [8] 

3.2. Multiple Linear Regression 

Multiple linear regression is a statistical technique used to 

analyze the relationship between a dependent variable 𝑦 and 

two or more independent variables 𝑥1, 𝑥2, … , 𝑥𝑛.The goal is to 

predict the value of 𝑦 based on the values of the independent 

variables. 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖   (1) 

Where: 

• 𝑦 is the dependent variable 

• 𝑥1, 𝑥2, … , 𝑥𝑛 are the independent variables 

• 𝛽0 is the intercept or constant term 

• 𝛽0, 𝛽1 … 𝛽𝑛  are the slope coefficients 

• 𝜖 is the error term 

3.3. Interpretation of the Above Multiple Linear Regression 

Equation 

The slope coefficients (𝛽) represent the change in the 

dependent variable for a one-unit change in the independent 

variable while holding all other independent variables 

constant. The intercept (𝛽0) represents the value of the 

dependent variable when all independent variables are equal 

to zero. The R-squared value represents the proportion of the 

variance in the dependent variable explained by the 

independent variables. 

3.4. Assumptions in Multiple Linear Regression 

• Linearity: The relationship between the dependent 

variable and independent variables should be linear. 

• Independence: Each observation should be independent 

of the others. 

• Homoscedasticity: The variance of the residuals should 

be constant across all levels of the independent 

variables. 
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• Normality: The residuals should be normally distributed. 

• No multicollinearity: The independent variables should 

not be highly correlated. [2,12] 

3.5. Advantages & Disadvantages of Multiple Linear 

Regression 

Multiple linear regression is a powerful tool for analyzing 

the relationship between multiple variables, identifying the 

relative importance of each variable and creating a linear 

equation that predicts the dependent variable. However, it 

requires a large sample size. It can be sensitive to outliers, 

making it essential to carefully evaluate the model and ensure 

that the data is representative of the population. Additionally, 

the model can be difficult to interpret, especially when 

multiple independent variables exist. 

3.6. Define Base Model (with all variables) 

This step involves taking all variables in the dataset for 

regression. Specify the dependent variable (𝑦) and 

independent variables (𝑥1, 𝑥2, . . . , 𝑥𝑛).  

𝑦 =  𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛)  (2) 

3.7. Parameter Estimation  

Estimate the coefficients of the linear equation using a 

suitable estimation method. This research uses Ordinary Least 

Square Regression (OLS), a simple and common technique for 

parameter estimation.  OLS regression is well suited as it 

adheres to the required assumptions in linear regression (3.3). 

This is also an unbiased and consistent estimator, as the 

estimator’s expected value is the same as the true value of the 

parameter, and it tends to converge as the data size increases. 

This research is based on a limited dataset; therefore, OLS 

regression would be better suited to this case. When a larger 

dataset is available, the non-linearity analysis may be studied 

as part of future work. 𝛽0, 𝛽1, . . . , 𝛽𝑛  =  (𝑋′𝑋)−1𝑋′𝑦 . This 

step involves using statistical techniques to estimate the 

coefficients of the linear equation. These coefficients signify 

the relationship between the independent variable(s) and the 

dependent variable. 

• 𝑋′𝑋 : the covariance matrix of the independent 
variables. 

• (𝑋′𝑋)−1 : the inverse of the covariance matrix of the 
independent variables. 

• 𝑋′𝑦 : the vector of observations of the dependent variable. 

3.8. Model Adequacy Checking 

This step involves checking whether the residuals are 
normally distributed, an assumption of many statistical 
tests. 

𝑊 =  𝛴(𝜀𝑖 −  𝜀)2    (3) 
 

𝑊 ~ 𝑁(0, 𝜎2)  (4) 

𝑊 is the sum of squares of the residuals. The residuals are 

normally distributed with mean 0 and variance 𝜎2. 

3.8. Model Transformation 

This step involves transforming the independent variables 

to meet the assumptions of multiple linear regression. Square 

root transformation was applied to the dependent variable (y) 

to meet the normality assumption, and then log transformation 

was applied to the same dependent variable(y). 

√(𝑦)  = 𝛽0 + 𝛽1𝑥1 + 𝛽𝑛𝑥2 +  … + 𝛽𝑛𝑥𝑛 +  𝜀         (5) 

 
𝑙𝑜𝑔(𝑦) = 𝛽0 + 𝛽1𝑥1 + 𝛽𝑛𝑥2 +  … + 𝛽𝑛𝑥𝑛 +  𝜀          (6) 

3.9. Non-Linear Relationship Verification  

As none of the above transformations didn’t help in 

improving the model, it is essential to check for non-linearity 

in the relationships between the dependent variable and the 

predictor variables. F-test and t-test statistics are generally 

used to determine if the relationships are linear or non-linear. 

To test this, quadratic terms are introduced, and this process is 

also impractical to verify each quadratic term with a smaller 

dataset since that doesn’t have much information to extract 

through relationship plots. There are a few other advanced 

techniques that can be leveraged to analyze the non-linearity 

as a future scope.  

3.10. Variable Selection – All Possible Regressions 

In the above-described methods, all variables are used to 

verify if a better model was obtained or not. It's necessary to 

evaluate several combinations of the variables and select the 

subset of variables that best predicts the outcome variable. As 

part of all possible regression methods, all possible 

combinations of predictor variables are considered to find the 

best fit. Equations that include one, two, three, and so on of 

the predictor variables are examined, and the best model is 

found based on an evaluation criterion. This is a challenging 

and time-consuming task because if there are K predictor 

variables, there are 2𝐾 possible equations to consider. It's 

impractical to analyze all of them, so the following analysis 

plots are used to help. 

3.10.1. Coefficient of Multiple Determination( 𝑅𝑝
2 ) 

In general, a better 𝑅2 value decides the goodness of a 

model; however, it is also necessary to access the 𝑅2 value 

when a regressor is added or removed from a model equation 

and make a judgment of whether to consider the regressor or 

not. Adj 𝑅2 could also be helpful in this purpose of taking or 

leaving the regressor. The 𝑅2 value for up to p regressors, i.e. 

𝑅𝑝
2 is calculated as  

                𝑅𝑝
2 =

𝑆𝑆𝑅(𝑝)

𝑆𝑆𝑟
= 1 − (

𝑆𝑆𝑅𝑒𝑠(𝑝)

𝑆𝑆𝑇
)  (7) 

Where 𝑆𝑆𝑅(𝑝) is the regression sum of squares and 

𝑆𝑆𝑅𝑒𝑠(𝑝) denotes the residual sum of squares for a subset 

model having 𝑝 terms. Note that 𝑅𝑝
2 value is calculated for 

each value of 𝑝, one for each possible subset model of size 𝑝 . 

As 𝑝 increases, the 𝑅𝑝
2 value also increases and reaches its 

maximum when 𝑝 = 𝐾 + 1. Therefore, adding up regressors 
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is beneficial until adding additional variables is not useful 

anymore by just providing a small increase in 𝑅𝑝
2. 

 
Fig. 3 𝑹𝒑

𝟐 Vs 𝒑 plot 

 

3.10.2. Residual Mean Square 𝑀𝑆𝑅𝑒𝑠(𝑝) 

𝑀𝑆𝑅𝑒𝑠(𝑝) is the reverse of above 𝑅𝑝
2 criterion. Model 

equations are aimed to achieve the lowe𝑟 𝑀𝑆𝑅𝑒𝑠 value. A 

better model has the comparatively lowest 𝑀𝑆𝑅𝑒𝑠(𝑝) value. In 

this criterion, the change in 𝑀𝑆𝑅𝑒𝑠(𝑝) is accessed while adding 

or deleting a regressor, and then a judgmental discussion is 

taken on whether to include or exclude the regressor. 

𝑀𝑆𝑅𝑒𝑠(𝑝) =
𝑆𝑆𝑅𝑒𝑠(𝑝)

𝑛−𝑝
  (8) 

 As the value of p increases, the sum of squares of 

residuals 𝑆𝑆𝑅𝑒𝑠(𝑝) decreases. The 𝑀𝑆𝑅𝑒𝑠(𝑝) value decreases in 

the beginning, then stabilizes, and may increase eventually. In 

the process of adding regressors from a model equation, when 

the reduction in 𝑆𝑆𝑅𝑒𝑠(𝑝)is not sufficient to compensate for the 

loss of one degree of freedom in the denominator, the 

𝑀𝑆𝑅𝑒𝑠(𝑝)  begins the upward movement. 

 
Fig. 4 𝑴𝑺𝑹𝒆𝒔(𝒑) Vs 𝒑 plot 

In summary in a 𝑀𝑆𝑅𝑒𝑠(𝑝)  Vs 𝑝 plot below points is 

looked at in order to select the best set of regressors. 

• Point where 𝑀𝑆𝑅𝑒𝑠(𝑝) holds the minimum value  

• The value of 𝑝  such that 𝑀𝑆𝑅𝑒𝑠(𝑝)) is approximately 

equal to 𝑀𝑆𝑅𝑒𝑠 for the full model 

• A value of 𝑝  near the point where the smallest 𝑀𝑆𝑅𝑒𝑠(𝑝) 

moves upward 

3.10.3. Mallows’ s  𝐶𝑝  Statistic 𝐶𝑝  

In the 𝐶𝑝 criterion, a plot of 𝐶𝑝 as a function of 𝑝 can be 

helpful to visualize it better. Regression equations with slight 

bias will have values of 𝐶𝑝 that fall near the line 𝐶𝑝 =
𝑝  (point A in the figure below), while those equations with 

substantial bias will fall above this line. Generally, models 

with small values of 𝐶𝑝  and those lying below the 𝐶𝑝 = 𝑝 

line represent better models. 

 
Fig. 5 𝐂𝐩 Vs 𝒑 plot 

3.11. Variable Selection – Forward Selection   

Forward selection is a method for selecting the most 

important predictor variables in regression analysis. It starts 

with an empty model and adds one predictor variable at a time, 

selecting the one with the highest correlation coefficient with 

the response variable. The process continues until a stopping 

criterion is reached. The advantages of forward selection 

include ease of implementation and flexibility in choosing the 

evaluation criterion. 

𝐹 =
𝑆𝑆𝑅(𝑥2|𝑥1)

𝑀𝑆𝑅𝑒𝑠(𝑥1,𝑥2)
    (9) 

In general, at each step, the regressor having the highest 

partial correlation with y (or equivalently, the largest partial 𝐹 

statistic given the other regressors already in the model) is 

added to the model if its partial 𝐹 statistic exceeds the 

preselected entry-level. 𝐹𝐼𝑁. It continues until a stopping 

criterion is reached, such as all or a specified number of 

predictor variables or 𝐹 statistic value doesn’t exceed 𝐹𝐼𝑁. 
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3.12. Variable Selection – Backward Elimination 

Backward elimination is a method for selecting the most 

important predictor variables in regression analysis by 

iteratively removing the least important ones. It starts with a 

full model and removes regressors one by one based on their 

partial F-statistic, stopping when a stopping criterion is 

reached. Backward elimination has advantages, such as 

handling correlated predictor variables and detecting 

interactions, but it can be computationally intensive. It's a 

useful alternative to forward selection and can be combined 

with other methods like stepwise regression and Lasso 

regression. 

3.13. Variable Selection – Stepwise Regression 

Stepwise regression is a method that combines forward 

and backward elimination to select the most important 

predictor variables in regression analysis. It iteratively adds or 

removes variables based on their partial F-statistic, stopping 

when a criterion is reached. Advantages include flexibility, 

handling of correlated variables, and detection of interactions. 

However, limitations include sensitivity to variable order and 

the potential for overfitting. 

4. Results and Discussion 
The analysis started with a base model by taking all the 

regressors. The model equation, therefore, was  𝑦 =  𝐶(𝑥1) +
 𝑥2 + 𝑥3 + 𝑥4 +  𝑥5 +  𝑥6 + 𝑥7 +  𝑥8  (C refers to a 

categorical variable) Upon running the regression, it is 

observed that all the 𝑝-values are more than the significance 

level = 0.05 .  

Therefore, none of the regressors are statistically 

significant, and about 50% of the data are away from the 45-

degree line in the QQ plot.[5] As part of the square root 

transformation, all of the y data are now replaced with their 

corresponding square roots, and the regression process 

continues. 

 
Fig. 6 OLS regression results for the base model 

 
Fig. 7 Residual plot of base model 

Fig. 8 OLS regression results with sqrt(y) 

Fig. 9 Residual plot of the model with sqrt(y) 

Results with log transformation on target variable y 

below. 
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Fig. 10 OLS regression results with log(y) 

Fig. 11 Residual plot of the model with log(y) 

4.1. Best Regressor Selection   

4.1.1. All Possible Regressions   

Examining the above plot of 𝑅𝑝
2 versus 𝑝, after three 

regressor sets [𝑥1, 𝑥3, 𝑥5] in the model, there is little or nothing 

much to be gained in terms of 𝑅𝑝
2 by introducing additional 

variables. Therefore,  𝑥1, 𝑥3, 𝑥5 are selected as the regressors. 

The minimum residual mean square model is the model, with 

𝑝 = 4 with  𝑀𝑆𝑅𝑒𝑠(4) = 56.5183. In the 𝑀𝑆𝑅𝑒𝑠( 𝑝 ) Vs 𝑝 

plot, the model that minimizes 𝑀𝑆𝑅𝑒𝑠( 𝑝 ) also maximizes the 

adjusted 𝑅2. There are few other regressors with comparable 

𝑀𝑆𝑅𝑒𝑠( 𝑝 ) value. However, 𝑥1, 𝑥3 and 𝑥5 are selected as the 

regressors as this set has the lowest 𝑀𝑆𝑅𝑒𝑠( 𝑝 ). From 

examining the  𝐶𝑝 versus 𝑝, it is found there are quite a few 

models that have comparable 𝐶𝑝 value. Analyzing the 

𝐶𝑝 values obtained by running the program, the regressors 

𝑥1, 𝑥3, 𝑥5 are selected, even though the sub-model doesn’t 

have the smallest 𝐶𝑝 (in general, the smallest 𝐶𝑝 is preferred.). 

This decision is taken  as in both the previous 

𝑅p
2 𝑎𝑛𝑑 𝑀𝑆𝑅𝑒𝑠(𝑝) methods incline more towards having 

[𝑥1 , 𝑥3, 𝑥5] as the regressors and also in the 𝐶𝑝 criterion check 

it’s 𝐶𝑝 value is close to the smallest 𝐶𝑝 even though it’s not 

the smallest. 

Fig. 12  𝑹𝒑
𝟐 versus 𝒑  plot 

Fig. 13  𝑀𝑆𝑅𝑒𝑠( 𝑝 )  versus 𝒑  plot 
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Fig. 14  𝑪𝒑 versus 𝒑  plot 

4.1.2. Stepwise Regressions   
Table 1.  Algorithm used and the regressors selected 

Selection Algorithm Selected Regressors 

Forward Selection 𝑥3, 𝑥5 

Backward Elimination 𝑥5 

Stepwise Regression 𝑥5 

By analyzing the 𝑅2, 𝑀𝑆𝑅𝑒𝑠 and 𝐶𝑝 values obtained from 

the sub-models, it is evident that the model with  𝑥1, 𝑥3, 𝑥5 as 

regressors predict better compared to the other sub models.  

Table 2.  Regressors used in the model and their regression statistics 

Regressors in 

sub-model 
𝑹𝒑

𝟐 𝑪𝒑 𝑴𝑺𝑹𝒆𝒔 

x1, x3, x5 0.486878 -0.737994 56.5183 

x3, x5 0.432215 -1.96438 57.7284 

x5 0.34927 -2.79049 61.4359 

(Complete set of regressors sets (28) with 𝑅2, 𝑀𝑆𝑅𝑒𝑠 and 

𝐶𝑝 can be found out by running the program in the appendix) 

4.1.3. Check Variance Influencing Factor (VIF) 
Table 3.  VIF of each regressor in the sub-model 

Regressors in sub-model VIF 𝒙𝟏 VIF 𝒙𝟑 VIF 𝒙𝟓 

𝑥1, 𝑥3, 𝑥5 1.9966 97.7009 96.6813 

𝑥3, 𝑥5 NA 96.6812 96.6812 

The VIF values for 𝑥3 and 𝑥5 seem to be very high in both 

models. This indicates a possibility of multicollinearity in the 

model. While comparing between the sub-models based on 

their 𝑅2, 𝑀𝑆𝑅𝑒𝑠 and 𝐶𝑝, the model with 𝑥1, 𝑥3 and 𝑥5appears 

to be doing better, and that of the VIF value for 𝑥1 is lower. 

Therefore, regressors 𝑥1, 𝑥3 and 𝑥5 can be taken as the final 

set of regressors for the final model. The regression process 

continued with 𝑥1, 𝑥3 and 𝑥5 as the regressors. There are at 

least 4 combinations of models (including interaction terms) 

to come up with the best model. 

𝑦 =  𝐶(𝑥1) + 𝑥3 + 𝑥5 

𝑦 =  𝐶(𝑥1) + 𝑥3 + 𝑥5 + 𝐶(𝑥1) ∗ 𝑥3 

𝑦 =  𝐶(𝑥1) + 𝑥3 + 𝑥5 + 𝐶(𝑥1) ∗ 𝑥5 

𝑦 =  𝐶(𝑥1) + 𝑥3 + 𝑥5 + 𝑥3 ∗ 𝑥5 

Table 4.  Models and their predictability 

Model 𝑹𝟐 𝑹𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏
𝟐  

𝑦 =  𝐶(𝑥1) + 𝑥3 + 𝑥5 46% 26.68% 

𝑦 =  𝐶(𝑥1) + 𝑥3 + 𝑥5  
+ 𝐶(𝑥1) ∗ 𝑥3 

46.2% 18.13% 

𝑦 =  𝐶(𝑥1) + 𝑥3 + 𝑥5 + 𝐶(𝑥1)
∗ 𝑥5 

88.7% 87.12% 

𝑦 =  𝐶(𝑥1) + 𝑥3 + 𝑥5 + 𝑥3

∗ 𝑥5 
46.3% 31.82% 

  

Fig. 15 OLS regression result of the final model 

Looking at the normal probability plot, it is evident that 

the points are closer to the 45-degree line than the original 

normality plots. The residual plot looks good as the points are 

distributed evenly. Though two possible outliers are visible, 

no action is necessary at this point because the QQ residual 

plot looks good and has a very small dataset of only 16 data 

points. So, it’s better to keep all the data points. Based on the 

available data and the analysis 𝑦 =  x1 + 𝑥3 + 𝑥5 + x1 ∗ 𝑥5 +
𝜀 , determined to be the best model. The prediction probability 

𝑅2 = 88.7%. The 𝐴𝑑𝑗 𝑅2 value is   close to 𝑅2 signifying the 

regressors contribute well to the final model. F statistic is 

greater than 1, and the p-value is less than the threshold of 

0.05, which signifies there is a good amount of relationship 

between the target variable and the feature variables. The 
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equation for the fitted line is 𝑦 ̂ =  271.92 − 120.30𝑥1 +
0.252𝑥3 − 0.5973𝑥5 + 0.5933𝑥1𝑥5 .  At this point, with the 

available training data, regressors ( x1),density (𝑥3) and initial 

boiling point (𝑥5) together can make the model prediction 

well. 

 

 
Fig. 16 Residual plot of the final model 

4.1.4. Quantifying the Environmental implications   

The reduction in fuel consumption has a direct impact on 

the environment. For every unit increase in fuel density, fuel 

consumption increases by 0.2474g. This means that a 1% 

reduction in fuel density would result in a 0.002474g decrease 

in fuel consumption, leading to a corresponding reduction in 

greenhouse gas emissions. Additionally, one centigrade 

increase in initial boiling point results in a 0.5973g decrease 

in fuel consumption, reducing air pollution, water pollution, 

land use, and biodiversity impacts. This reduction in fuel 

consumption has a significant positive impact on the 

environment, reducing the amount of pollutants released into 

the atmosphere and preserving natural habitats. 

5. Future Work 
5.1. Inclusion of other Fuel Attributes  

This research is limited to understanding the impact of the 

above-mentioned fuel properties, such as cetane number, 

density, viscosity, boiling point, flash point, aromatics, etc., 

on fuel consumption. However, various external factors, such 

as fuel type, driving conditions, road conditions, etc., and fuel 

contents, such as NOx, CO2, etc., play a significant role in fuel 

consumption. More studies need to be carried out based on 

these factors to get a better understanding of all factors 

influencing fuel consumption and thereby taking action to 

reduce pollution. 

5.2. Use of Advanced Techniques 

The utilization of advanced techniques to further analyze 

the relationship between fuel density and consumption is 

necessary. Non-linear analysis using parametric and non-

parametric models, such as polynomial regression, 

exponential regression, and power regression, can provide a 

more accurate representation of the complex relationships 

between these variables. Additionally, machine learning 

algorithms like gradient descent can be employed to identify 

patterns and trends in the data that may not be apparent 

through traditional statistical methods. By incorporating these 

advanced techniques, researchers can gain a deeper 

understanding of the underlying relationships between fuel 

density and consumption and develop more effective models 

for predicting and optimizing fuel consumption. 

6. Conclusion  
This study investigated the relationship between fuel 

consumption and various fuel properties, including vehicle 

type, cetane number, density, viscosity, initial boiling point, 

final boiling point, flash point, and total aromatics. The results 

of the correlation analysis revealed a strong negative 

correlation between fuel consumption and initial boiling point, 

indicating that initial boiling point could be useful in reducing 

fuel consumption. The regression analysis revealed a 

significant relationship between fuel consumption and the 

predictor variables, with the best-fit model indicating that fuel 

consumption is influenced by vehicle type, density, initial 

boiling point, and the interaction between vehicle type and 

initial boiling point. The model validation showed that the 

model is a good fit for the data and can be used to make 

accurate predictions about fuel consumption. Using several 

regressor selection methods, vehicle type (𝑥1), density (𝑥3), 

and initial boiling point (𝑥5) found the most significant and 

important variables with the given dataset in explaining the 

variability in fuel consumption. 

 The final model, 𝑦 =  𝑥1  +  𝑥3  +  𝑥5  +  𝑥1 ∗ 𝑥5, 

suggests that the vehicle type, density, initial boiling point, 

and the interaction between vehicle type and initial boiling 

point influence fuel consumption. This model can be used to 

predict fuel consumption based on the values of the predictor 

variables and develop strategies to reduce fuel consumption. 

This study provides valuable insights into the relationships 

between fuel consumption and fuel properties and highlights 

the importance of considering the interactions between these 

variables when optimizing fuel consumption. The findings of 

this study can be used to inform the development of more 

efficient and environmentally friendly fuels and to optimize 

fuel consumption in various applications. Additionally, the 

results of this study can be used as a basis for further research 

on the topic, such as investigating the effects of other fuel 

properties on fuel consumption or examining the impact of 

fuel consumption on different types of vehicles. 
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Appendix 1 
Statistics of sub-models 

Number of 

Regressors 
p 

Regressors in 

the model 
SSRes p 

R_squae 

p 

Adj R 

square p 
MSRes p Cp 

1 2 ['x1'] 1249.5000 0.0547 -0.0129 89.2500 1.3790 

1 2 ['x2'] 1315.3046 0.0049 -0.0662 93.9503 2.0836 

1 2 ['x3'] 1286.9184 0.0264 -0.0432 91.9227 1.7796 

1 2 ['x4'] 1319.2105 0.0019 -0.0694 94.2293 2.1254 

1 2 ['x5'] 860.1029 0.3493 0.3028 61.4359 -2.7905 

1 2 ['x6'] 865.0580 0.3455 0.2988 61.7899 -2.7374 

1 2 ['x7'] 982.6454 0.2566 0.2035 70.1890 -1.4784 

1 2 ['x8'] 984.2976 0.2553 0.2021 70.3070 -1.4607 

2 3 ['x1', 'x2'] 1243.0546 0.0595 -0.0851 95.6196 3.3100 

2 3 ['x1', 'x3'] 1214.6684 0.0810 -0.0604 93.4360 3.0060 

2 3 ['x1', 'x4'] 1246.9605 0.0566 -0.0886 95.9200 3.3518 

2 3 ['x1', 'x5'] 787.8529 0.4039 0.3122 60.6041 -1.5641 

2 3 ['x1', 'x6'] 792.8080 0.4002 0.3079 60.9852 -1.5110 

2 3 ['x1', 'x7'] 910.3954 0.3112 0.2053 70.0304 -0.2520 

2 3 ['x1', 'x8'] 912.0476 0.3100 0.2038 70.1575 -0.2343 

2 3 ['x2', 'x3'] 1286.8523 0.0264 -0.1234 98.9886 3.7789 

2 3 ['x2', 'x4'] 1310.9797 0.0081 -0.1444 100.8446 4.0373 

2 3 ['x2', 'x5'] 841.4976 0.3633 0.2654 64.7306 -0.9897 

2 3 ['x2', 'x6'] 861.9746 0.3479 0.2475 66.3057 -0.7704 

2 3 ['x2', 'x7'] 972.8944 0.2639 0.1507 74.8380 0.4172 

2 3 ['x2', 'x8'] 939.4744 0.2892 0.1799 72.2673 0.0594 

2 3 ['x3', 'x4'] 1163.8195 0.1195 -0.0160 89.5246 2.4615 
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2 3 ['x3', 'x5'] 750.4695 0.4322 0.3449 57.7284 -1.9644 

2 3 ['x3', 'x6'] 857.3497 0.3514 0.2516 65.9500 -0.8200 

2 3 ['x3', 'x7'] 812.0833 0.3856 0.2911 62.4679 -1.3047 

2 3 ['x3', 'x8'] 950.2303 0.2811 0.1705 73.0946 0.1746 

2 3 ['x4', 'x5'] 818.7473 0.3806 0.2853 62.9806 -1.2333 

2 3 ['x4', 'x6'] 813.3361 0.3847 0.2900 62.5643 -1.2912 

2 3 ['x4', 'x7'] 883.6632 0.3314 0.2286 67.9741 -0.5382 

2 3 ['x4', 'x8'] 974.1056 0.2630 0.1496 74.9312 0.4302 

2 3 ['x5', 'x6'] 798.7773 0.3957 0.3027 61.4444 -1.4471 

2 3 ['x5', 'x7'] 849.0222 0.3577 0.2588 65.3094 -0.9091 

2 3 ['x5', 'x8'] 769.2151 0.4180 0.3285 59.1704 -1.7637 

2 3 ['x6', 'x7'] 832.5670 0.3701 0.2732 64.0436 -1.0853 

2 3 ['x6', 'x8'] 821.6033 0.3784 0.2828 63.2003 -1.2027 

2 3 ['x7', 'x8'] 832.2658 0.3703 0.2735 64.0204 -1.0886 

3 4 ['x1', 'x2', 'x3'] 1214.6023 0.0811 -0.1487 101.2169 5.0053 

3 4 ['x1', 'x2', 'x4'] 1238.7297 0.0628 -0.1715 103.2275 5.2636 

3 4 ['x1', 'x2', 'x5'] 769.2476 0.4180 0.2725 64.1040 0.2367 

3 4 ['x1', 'x2', 'x6'] 789.7246 0.4025 0.2531 65.8104 0.4559 

3 4 ['x1', 'x2', 'x7'] 900.6444 0.3186 0.1482 75.0537 1.6436 

3 4 ['x1', 'x2', 'x8'] 867.2244 0.3439 0.1799 72.2687 1.2858 

3 4 ['x1', 'x3', 'x4'] 1091.5695 0.1741 -0.0323 90.9641 3.6879 

3 4 ['x1', 'x3', 'x5'] 678.2195 0.4869 0.3586 56.5183 -0.7380 

3 4 ['x1', 'x3', 'x6'] 785.0997 0.4060 0.2575 65.4250 0.4064 

3 4 ['x1', 'x3', 'x7'] 739.8333 0.4403 0.3003 61.6528 -0.0783 

3 4 ['x1', 'x3', 'x8'] 877.9803 0.3357 0.1697 73.1650 1.4009 

3 4 ['x1', 'x4', 'x5'] 746.4973 0.4352 0.2940 62.2081 -0.0069 

3 4 ['x1', 'x4', 'x6'] 741.0861 0.4393 0.2991 61.7572 -0.0649 

3 4 ['x1', 'x4', 'x7'] 811.4132 0.3861 0.2326 67.6178 0.6882 

3 4 ['x1', 'x4', 'x8'] 901.8556 0.3177 0.1471 75.1546 1.6566 

3 4 ['x1', 'x5', 'x6'] 726.5273 0.4503 0.3129 60.5439 -0.2207 

3 4 ['x1', 'x5', 'x7'] 776.7722 0.4123 0.2654 64.7310 0.3173 

3 4 ['x1', 'x5', 'x8'] 696.9651 0.4727 0.3409 58.0804 -0.5373 

3 4 ['x1', 'x6', 'x7'] 760.3170 0.4248 0.2810 63.3598 0.1411 

3 4 ['x1', 'x6', 'x8'] 749.3533 0.4331 0.2913 62.4461 0.0237 

3 4 ['x1', 'x7', 'x8'] 760.0158 0.4250 0.2812 63.3346 0.1378 

3 4 ['x2', 'x3', 'x4'] 1137.5658 0.1393 -0.0758 94.7972 4.1804 

3 4 ['x2', 'x3', 'x5'] 750.1030 0.4325 0.2906 62.5086 0.0317 

3 4 ['x2', 'x3', 'x6'] 856.9727 0.3516 0.1895 71.4144 1.1760 

3 4 ['x2', 'x3', 'x7'] 798.2187 0.3961 0.2451 66.5182 0.5469 

3 4 ['x2', 'x3', 'x8'] 922.3496 0.3022 0.1277 76.8625 1.8760 

3 4 ['x2', 'x4', 'x5'] 807.6841 0.3889 0.2362 67.3070 0.6482 

3 4 ['x2', 'x4', 'x6'] 812.7108 0.3851 0.2314 67.7259 0.7021 

3 4 ['x2', 'x4', 'x7'] 882.1314 0.3326 0.1658 73.5110 1.4454 

3 4 ['x2', 'x4', 'x8'] 934.7633 0.2928 0.1160 77.8969 2.0089 

3 4 ['x2', 'x5', 'x6'] 797.1277 0.3969 0.2461 66.4273 0.5352 

3 4 ['x2', 'x5', 'x7'] 826.8348 0.3744 0.2180 68.9029 0.8533 

3 4 ['x2', 'x5', 'x8'] 767.5349 0.4193 0.2741 63.9612 0.2183 

3 4 ['x2', 'x6', 'x7'] 832.3171 0.3703 0.2129 69.3598 0.9120 

3 4 ['x2', 'x6', 'x8'] 794.8246 0.3987 0.2483 66.2354 0.5106 

3 4 ['x2', 'x7', 'x8'] 818.6713 0.3806 0.2258 68.2226 0.7659 

3 4 ['x3', 'x4', 'x5'] 737.7077 0.4419 0.3023 61.4756 -0.1010 

3 4 ['x3', 'x4', 'x6'] 787.2208 0.4044 0.2555 65.6017 0.4291 

3 4 ['x3', 'x4', 'x7'] 811.4878 0.3861 0.2326 67.6240 0.6890 
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3 4 ['x3', 'x4', 'x8'] 900.8902 0.3184 0.1480 75.0742 1.6462 

3 4 ['x3', 'x5', 'x6'] 745.6760 0.4358 0.2948 62.1397 -0.0157 

3 4 ['x3', 'x5', 'x7'] 749.3358 0.4331 0.2913 62.4447 0.0235 

3 4 ['x3', 'x5', 'x8'] 745.4387 0.4360 0.2950 62.1199 -0.0182 

3 4 ['x3', 'x6', 'x7'] 809.9736 0.3872 0.2340 67.4978 0.6728 

3 4 ['x3', 'x6', 'x8'] 778.0683 0.4113 0.2642 64.8390 0.3311 

3 4 ['x3', 'x7', 'x8'] 804.7946 0.3911 0.2389 67.0662 0.6173 

3 4 ['x4', 'x5', 'x6'] 798.6237 0.3958 0.2447 66.5520 0.5512 

3 4 ['x4', 'x5', 'x7'] 818.4796 0.3808 0.2260 68.2066 0.7638 

3 4 ['x4', 'x5', 'x8'] 755.2663 0.4286 0.2857 62.9389 0.0870 

3 4 ['x4', 'x6', 'x7'] 779.4957 0.4103 0.2628 64.9580 0.3464 

3 4 ['x4', 'x6', 'x8'] 777.7035 0.4116 0.2645 64.8086 0.3272 

3 4 ['x4', 'x7', 'x8'] 799.2207 0.3953 0.2442 66.6017 0.5576 

3 4 ['x5', 'x6', 'x7'] 793.2047 0.3999 0.2499 66.1004 0.4932 

3 4 ['x5', 'x6', 'x8'] 754.2588 0.4293 0.2867 62.8549 0.0762 

3 4 ['x5', 'x7', 'x8'] 764.2920 0.4218 0.2772 63.6910 0.1836 

3 4 ['x6', 'x7', 'x8'] 785.6531 0.4056 0.2570 65.4711 0.4123 

4 5 ['x1', 'x2', 'x3', 'x4'] 1065.3158 0.1940 -0.0991 96.8469 5.4068 

4 5 ['x1', 'x2', 'x3', 'x5'] 677.8530 0.4872 0.3007 61.6230 1.2581 

4 5 ['x1', 'x2', 'x3', 'x6'] 784.7227 0.4063 0.1904 71.3384 2.4024 

4 5 ['x1', 'x2', 'x3', 'x7'] 725.9687 0.4508 0.2510 65.9972 1.7733 

4 5 ['x1', 'x2', 'x3', 'x8'] 850.0996 0.3568 0.1230 77.2818 3.1024 

4 5 ['x1', 'x2', 'x4', 'x5'] 735.4341 0.4436 0.2413 66.8576 1.8746 

4 5 ['x1', 'x2', 'x4', 'x6'] 740.4608 0.4398 0.2361 67.3146 1.9285 

4 5 ['x1', 'x2', 'x4', 'x7'] 809.8814 0.3873 0.1645 73.6256 2.6718 

4 5 ['x1', 'x2', 'x4', 'x8'] 862.5133 0.3474 0.1102 78.4103 3.2353 

4 5 ['x1', 'x2', 'x5', 'x6'] 724.8777 0.4516 0.2522 65.8980 1.7616 

4 5 ['x1', 'x2', 'x5', 'x7'] 754.5848 0.4291 0.2215 68.5986 2.0797 

4 5 ['x1', 'x2', 'x5', 'x8'] 695.2849 0.4740 0.2827 63.2077 1.4447 

4 5 ['x1', 'x2', 'x6', 'x7'] 760.0671 0.4250 0.2158 69.0970 2.1384 

4 5 ['x1', 'x2', 'x6', 'x8'] 722.5746 0.4533 0.2545 65.6886 1.7369 

4 5 ['x1', 'x2', 'x7', 'x8'] 746.4213 0.4353 0.2299 67.8565 1.9923 

4 5 ['x1', 'x3', 'x4', 'x5'] 665.4577 0.4965 0.3135 60.4962 1.1254 

4 5 ['x1', 'x3', 'x4', 'x6'] 714.9708 0.4591 0.2624 64.9973 1.6555 

4 5 ['x1', 'x3', 'x4', 'x7'] 739.2378 0.4407 0.2373 67.2034 1.9154 

4 5 ['x1', 'x3', 'x4', 'x8'] 828.6402 0.3731 0.1451 75.3309 2.8726 

4 5 ['x1', 'x3', 'x5', 'x6'] 673.4260 0.4905 0.3052 61.2205 1.2107 

4 5 ['x1', 'x3', 'x5', 'x7'] 677.0858 0.4877 0.3015 61.5533 1.2499 

4 5 ['x1', 'x3', 'x5', 'x8'] 673.1887 0.4907 0.3055 61.1990 1.2081 

4 5 ['x1', 'x3', 'x6', 'x7'] 737.7236 0.4419 0.2389 67.0658 1.8991 

4 5 ['x1', 'x3', 'x6', 'x8'] 705.8183 0.4660 0.2718 64.1653 1.5575 

4 5 ['x1', 'x3', 'x7', 'x8'] 732.5446 0.4458 0.2442 66.5950 1.8437 

4 5 ['x1', 'x4', 'x5', 'x6'] 726.3737 0.4504 0.2506 66.0340 1.7776 

4 5 ['x1', 'x4', 'x5', 'x7'] 746.2296 0.4354 0.2301 67.8391 1.9902 

4 5 ['x1', 'x4', 'x5', 'x8'] 683.0163 0.4832 0.2953 62.0924 1.3134 

4 5 ['x1', 'x4', 'x6', 'x7'] 707.2457 0.4649 0.2703 64.2951 1.5728 

4 5 ['x1', 'x4', 'x6', 'x8'] 705.4535 0.4663 0.2722 64.1321 1.5536 

4 5 ['x1', 'x4', 'x7', 'x8'] 726.9707 0.4500 0.2500 66.0882 1.7840 

4 5 ['x1', 'x5', 'x6', 'x7'] 720.9547 0.4545 0.2562 65.5413 1.7196 

4 5 ['x1', 'x5', 'x6', 'x8'] 682.0088 0.4840 0.2964 62.0008 1.3026 

4 5 ['x1', 'x5', 'x7', 'x8'] 692.0420 0.4764 0.2860 62.9129 1.4100 

4 5 ['x1', 'x6', 'x7', 'x8'] 713.4031 0.4603 0.2640 64.8548 1.6387 

4 5 ['x2', 'x3', 'x4', 'x5'] 732.3446 0.4459 0.2444 66.5768 1.8415 
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4 5 ['x2', 'x3', 'x4', 'x6'] 768.3738 0.4187 0.2073 69.8522 2.2273 

4 5 ['x2', 'x3', 'x4', 'x7'] 792.7565 0.4002 0.1821 72.0688 2.4884 

4 5 ['x2', 'x3', 'x4', 'x8'] 891.2011 0.3257 0.0806 81.0183 3.5425 

4 5 ['x2', 'x3', 'x5', 'x6'] 745.3324 0.4361 0.2310 67.7575 1.9806 

4 5 ['x2', 'x3', 'x5', 'x7'] 748.1710 0.4340 0.2281 68.0155 2.0110 

4 5 ['x2', 'x3', 'x5', 'x8'] 743.0781 0.4378 0.2334 67.5526 1.9565 

4 5 ['x2', 'x3', 'x6', 'x7'] 798.1847 0.3961 0.1765 72.5622 2.5465 

4 5 ['x2', 'x3', 'x6', 'x8'] 766.3723 0.4202 0.2093 69.6702 2.2059 

4 5 ['x2', 'x3', 'x7', 'x8'] 785.0343 0.4061 0.1901 71.3668 2.4057 

4 5 ['x2', 'x4', 'x5', 'x6'] 797.1199 0.3969 0.1776 72.4654 2.5351 

4 5 ['x2', 'x4', 'x5', 'x7'] 807.5687 0.3890 0.1668 73.4153 2.6470 

4 5 ['x2', 'x4', 'x5', 'x8'] 753.7036 0.4298 0.2224 68.5185 2.0702 

4 5 ['x2', 'x4', 'x6', 'x7'] 767.5021 0.4193 0.2082 69.7729 2.2180 

4 5 ['x2', 'x4', 'x6', 'x8'] 762.0422 0.4235 0.2138 69.2766 2.1595 

4 5 ['x2', 'x4', 'x7', 'x8'] 785.7123 0.4056 0.1894 71.4284 2.4130 

4 5 ['x2', 'x5', 'x6', 'x7'] 790.2118 0.4021 0.1847 71.8374 2.4612 

4 5 ['x2', 'x5', 'x6', 'x8'] 749.9598 0.4326 0.2263 68.1782 2.0302 

4 5 ['x2', 'x5', 'x7', 'x8'] 763.5928 0.4223 0.2122 69.4175 2.1761 

4 5 ['x2', 'x6', 'x7', 'x8'] 770.2947 0.4172 0.2053 70.0268 2.2479 

4 5 ['x3', 'x4', 'x5', 'x6'] 737.5067 0.4420 0.2391 67.0461 1.8968 

4 5 ['x3', 'x4', 'x5', 'x7'] 737.2280 0.4422 0.2394 67.0207 1.8938 

4 5 ['x3', 'x4', 'x5', 'x8'] 733.1577 0.4453 0.2436 66.6507 1.8503 

4 5 ['x3', 'x4', 'x6', 'x7'] 777.7074 0.4116 0.1976 70.7007 2.3273 

4 5 ['x3', 'x4', 'x6', 'x8'] 777.0274 0.4121 0.1983 70.6389 2.3200 

4 5 ['x3', 'x4', 'x7', 'x8'] 799.1956 0.3954 0.1755 72.6541 2.5574 

4 5 ['x3', 'x5', 'x6', 'x7'] 739.8918 0.4402 0.2367 67.2629 1.9224 

4 5 ['x3', 'x5', 'x6', 'x8'] 744.3966 0.4368 0.2320 67.6724 1.9706 

4 5 ['x3', 'x5', 'x7', 'x8'] 745.3464 0.4361 0.2310 67.7588 1.9808 

4 5 ['x3', 'x6', 'x7', 'x8'] 774.6406 0.4139 0.2008 70.4219 2.2944 

4 5 ['x4', 'x5', 'x6', 'x7'] 757.9088 0.4266 0.2181 68.9008 2.1153 

4 5 ['x4', 'x5', 'x6', 'x8'] 753.4383 0.4300 0.2227 68.4944 2.0674 

4 5 ['x4', 'x5', 'x7', 'x8'] 755.2610 0.4286 0.2208 68.6601 2.0869 

4 5 ['x4', 'x6', 'x7', 'x8'] 769.5661 0.4178 0.2060 69.9606 2.2401 

4 5 ['x5', 'x6', 'x7', 'x8'] 750.6067 0.4321 0.2256 68.2370 2.0371 

5 6 ['x1', 'x2', 'x3', 'x4', 'x5'] 660.0946 0.5006 0.2509 66.0095 3.0679 

5 6 ['x1', 'x2', 'x3', 'x4', 'x6'] 696.1238 0.4733 0.2100 69.6124 3.4537 

5 6 ['x1', 'x2', 'x3', 'x4', 'x7'] 720.5065 0.4549 0.1823 72.0506 3.7148 

5 6 ['x1', 'x2', 'x3', 'x4', 'x8'] 818.9511 0.3804 0.0706 81.8951 4.7689 

5 6 ['x1', 'x2', 'x3', 'x5', 'x6'] 673.0824 0.4908 0.2361 67.3082 3.2070 

5 6 ['x1', 'x2', 'x3', 'x5', 'x7'] 675.9210 0.4886 0.2329 67.5921 3.2374 

5 6 ['x1', 'x2', 'x3', 'x5', 'x8'] 670.8281 0.4925 0.2387 67.0828 3.1829 

5 6 ['x1', 'x2', 'x3', 'x6', 'x7'] 725.9347 0.4508 0.1762 72.5935 3.7729 

5 6 ['x1', 'x2', 'x3', 'x6', 'x8'] 694.1223 0.4748 0.2123 69.4122 3.4323 

5 6 ['x1', 'x2', 'x3', 'x7', 'x8'] 712.7843 0.4607 0.1911 71.2784 3.6321 

5 6 ['x1', 'x2', 'x4', 'x5', 'x6'] 724.8699 0.4516 0.1774 72.4870 3.7615 

5 6 ['x1', 'x2', 'x4', 'x5', 'x7'] 735.3187 0.4437 0.1655 73.5319 3.8734 

5 6 ['x1', 'x2', 'x4', 'x5', 'x8'] 681.4536 0.4844 0.2266 68.1454 3.2966 

5 6 ['x1', 'x2', 'x4', 'x6', 'x7'] 695.2521 0.4740 0.2110 69.5252 3.4444 

5 6 ['x1', 'x2', 'x4', 'x6', 'x8'] 689.7922 0.4781 0.2172 68.9792 3.3859 

5 6 ['x1', 'x2', 'x4', 'x7', 'x8'] 713.4623 0.4602 0.1903 71.3462 3.6394 

5 6 ['x1', 'x2', 'x5', 'x6', 'x7'] 717.9618 0.4568 0.1852 71.7962 3.6875 

5 6 ['x1', 'x2', 'x5', 'x6', 'x8'] 677.7098 0.4873 0.2309 67.7710 3.2565 

5 6 ['x1', 'x2', 'x5', 'x7', 'x8'] 691.3428 0.4769 0.2154 69.1343 3.4025 
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5 6 ['x1', 'x2', 'x6', 'x7', 'x8'] 698.0447 0.4719 0.2078 69.8045 3.4743 

5 6 ['x1', 'x3', 'x4', 'x5', 'x6'] 665.2567 0.4967 0.2450 66.5257 3.1232 

5 6 ['x1', 'x3', 'x4', 'x5', 'x7'] 664.9780 0.4969 0.2453 66.4978 3.1202 

5 6 ['x1', 'x3', 'x4', 'x5', 'x8'] 660.9077 0.5000 0.2500 66.0908 3.0766 

5 6 ['x1', 'x3', 'x4', 'x6', 'x7'] 705.4574 0.4663 0.1994 70.5457 3.5537 

5 6 ['x1', 'x3', 'x4', 'x6', 'x8'] 704.7774 0.4668 0.2002 70.4777 3.5464 

5 6 ['x1', 'x3', 'x4', 'x7', 'x8'] 726.9456 0.4500 0.1750 72.6946 3.7837 

5 6 ['x1', 'x3', 'x5', 'x6', 'x7'] 667.6418 0.4949 0.2423 66.7642 3.1487 

5 6 ['x1', 'x3', 'x5', 'x6', 'x8'] 672.1466 0.4915 0.2372 67.2147 3.1970 

5 6 ['x1', 'x3', 'x5', 'x7', 'x8'] 673.0964 0.4908 0.2361 67.3096 3.2072 

5 6 ['x1', 'x3', 'x6', 'x7', 'x8'] 702.3906 0.4686 0.2029 70.2391 3.5208 

5 6 ['x1', 'x4', 'x5', 'x6', 'x7'] 685.6588 0.4812 0.2219 68.5659 3.3417 

5 6 ['x1', 'x4', 'x5', 'x6', 'x8'] 681.1883 0.4846 0.2269 68.1188 3.2938 

5 6 ['x1', 'x4', 'x5', 'x7', 'x8'] 683.0110 0.4833 0.2249 68.3011 3.3133 

5 6 ['x1', 'x4', 'x6', 'x7', 'x8'] 697.3161 0.4724 0.2086 69.7316 3.4665 

5 6 ['x1', 'x5', 'x6', 'x7', 'x8'] 678.3567 0.4868 0.2302 67.8357 3.2635 

5 6 ['x2', 'x3', 'x4', 'x5', 'x6'] 732.3002 0.4460 0.1689 73.2300 3.8411 

5 6 ['x2', 'x3', 'x4', 'x5', 'x7'] 732.3084 0.4460 0.1689 73.2308 3.8412 

5 6 ['x2', 'x3', 'x4', 'x5', 'x8'] 727.6026 0.4495 0.1743 72.7603 3.7908 

5 6 ['x2', 'x3', 'x4', 'x6', 'x7'] 758.3774 0.4262 0.1393 75.8377 4.1203 

5 6 ['x2', 'x3', 'x4', 'x6', 'x8'] 761.5426 0.4238 0.1358 76.1543 4.1542 

5 6 ['x2', 'x3', 'x4', 'x7', 'x8'] 784.1670 0.4067 0.1101 78.4167 4.3964 

5 6 ['x2', 'x3', 'x5', 'x6', 'x7'] 736.8091 0.4426 0.1638 73.6809 3.8894 

5 6 ['x2', 'x3', 'x5', 'x6', 'x8'] 742.7705 0.4380 0.1571 74.2771 3.9532 

5 6 ['x2', 'x3', 'x5', 'x7', 'x8'] 742.4922 0.4383 0.1574 74.2492 3.9502 

5 6 ['x2', 'x3', 'x6', 'x7', 'x8'] 765.2747 0.4210 0.1315 76.5275 4.1941 

5 6 ['x2', 'x4', 'x5', 'x6', 'x7'] 755.8954 0.4281 0.1422 75.5895 4.0937 

5 6 ['x2', 'x4', 'x5', 'x6', 'x8'] 749.8964 0.4326 0.1490 74.9896 4.0295 

5 6 ['x2', 'x4', 'x5', 'x7', 'x8'] 753.6381 0.4298 0.1447 75.3638 4.0695 

5 6 ['x2', 'x4', 'x6', 'x7', 'x8'] 748.4563 0.4337 0.1506 74.8456 4.0141 

5 6 ['x2', 'x5', 'x6', 'x7', 'x8'] 747.8240 0.4342 0.1513 74.7824 4.0073 

5 6 ['x3', 'x4', 'x5', 'x6', 'x7'] 736.8914 0.4425 0.1637 73.6891 3.8902 

5 6 ['x3', 'x4', 'x5', 'x6', 'x8'] 730.8385 0.4471 0.1706 73.0838 3.8254 

5 6 ['x3', 'x4', 'x5', 'x7', 'x8'] 731.9447 0.4462 0.1693 73.1945 3.8373 

5 6 ['x3', 'x4', 'x6', 'x7', 'x8'] 761.3614 0.4240 0.1360 76.1361 4.1522 

5 6 ['x3', 'x5', 'x6', 'x7', 'x8'] 730.4133 0.4474 0.1711 73.0413 3.8209 

5 6 ['x4', 'x5', 'x6', 'x7', 'x8'] 744.1177 0.4370 0.1555 74.4118 3.9676 

6 7 
['x1', 'x2', 'x3', 'x4', 'x5', 

'x6'] 
660.0502 0.5006 0.1677 73.3389 5.0675 

6 7 
['x1', 'x2', 'x3', 'x4', 'x5', 

'x7'] 
660.0584 0.5006 0.1677 73.3398 5.0675 

6 7 
['x1', 'x2', 'x3', 'x4', 'x5', 

'x8'] 
655.3526 0.5042 0.1736 72.8170 5.0172 

6 7 
['x1', 'x2', 'x3', 'x4', 'x6', 

'x7'] 
686.1274 0.4809 0.1348 76.2364 5.3467 

6 7 
['x1', 'x2', 'x3', 'x4', 'x6', 

'x8'] 
689.2926 0.4785 0.1308 76.5881 5.3806 

6 7 
['x1', 'x2', 'x3', 'x4', 'x7', 

'x8'] 
711.9170 0.4614 0.1023 79.1019 5.6228 

6 7 
['x1', 'x2', 'x3', 'x5', 'x6', 

'x7'] 
664.5591 0.4972 0.1620 73.8399 5.1157 

6 7 
['x1', 'x2', 'x3', 'x5', 'x6', 

'x8'] 
670.5205 0.4927 0.1545 74.5023 5.1796 
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6 7 
['x1', 'x2', 'x3', 'x5', 'x7', 

'x8'] 
670.2422 0.4929 0.1549 74.4714 5.1766 

6 7 
['x1', 'x2', 'x3', 'x6', 'x7', 

'x8'] 
693.0247 0.4757 0.1261 77.0027 5.4205 

6 7 
['x1', 'x2', 'x4', 'x5', 'x6', 

'x7'] 
683.6454 0.4828 0.1380 75.9606 5.3201 

6 7 
['x1', 'x2', 'x4', 'x5', 'x6', 

'x8'] 
677.6464 0.4873 0.1455 75.2940 5.2559 

6 7 
['x1', 'x2', 'x4', 'x5', 'x7', 

'x8'] 
681.3881 0.4845 0.1408 75.7098 5.2959 

6 7 
['x1', 'x2', 'x4', 'x6', 'x7', 

'x8'] 
676.2063 0.4884 0.1473 75.1340 5.2405 

6 7 
['x1', 'x2', 'x5', 'x6', 'x7', 

'x8'] 
675.5740 0.4889 0.1481 75.0638 5.2337 

6 7 
['x1', 'x3', 'x4', 'x5', 'x6', 

'x7'] 
664.6414 0.4972 0.1619 73.8490 5.1166 

6 7 
['x1', 'x3', 'x4', 'x5', 'x6', 

'x8'] 
658.5885 0.5017 0.1695 73.1765 5.0518 

6 7 
['x1', 'x3', 'x4', 'x5', 'x7', 

'x8'] 
659.6947 0.5009 0.1682 73.2994 5.0637 

6 7 
['x1', 'x3', 'x4', 'x6', 'x7', 

'x8'] 
689.1114 0.4786 0.1311 76.5679 5.3786 

6 7 
['x1', 'x3', 'x5', 'x6', 'x7', 

'x8'] 
658.1633 0.5021 0.1701 73.1293 5.0473 

6 7 
['x1', 'x4', 'x5', 'x6', 'x7', 

'x8'] 
671.8677 0.4917 0.1528 74.6520 5.1940 

6 7 
['x2', 'x3', 'x4', 'x5', 'x6', 

'x7'] 
731.0911 0.4469 0.0781 81.2323 5.8281 

6 7 
['x2', 'x3', 'x4', 'x5', 'x6', 

'x8'] 
726.8809 0.4501 0.0834 80.7645 5.7830 

6 7 
['x2', 'x3', 'x4', 'x5', 'x7', 

'x8'] 
727.2434 0.4498 0.0830 80.8048 5.7869 

6 7 
['x2', 'x3', 'x4', 'x6', 'x7', 

'x8'] 
746.3690 0.4353 0.0589 82.9299 5.9917 

6 7 
['x2', 'x3', 'x5', 'x6', 'x7', 

'x8'] 
729.4028 0.4482 0.0803 81.0448 5.8100 

6 7 
['x2', 'x4', 'x5', 'x6', 'x7', 

'x8'] 
737.6990 0.4419 0.0698 81.9666 5.8989 

6 7 
['x3', 'x4', 'x5', 'x6', 'x7', 

'x8'] 
728.5370 0.4488 0.0813 80.9486 5.8008 

7 8 
['x1', 'x2', 'x3', 'x4', 'x5', 

'x6', 'x7'] 
658.8411 0.5015 0.0654 82.3551 7.0545 

7 8 
['x1', 'x2', 'x3', 'x4', 'x5', 

'x6', 'x8'] 
654.6309 0.5047 0.0714 81.8289 7.0094 

7 8 
['x1', 'x2', 'x3', 'x4', 'x5', 

'x7', 'x8'] 
654.9934 0.5044 0.0708 81.8742 7.0133 

7 8 
['x1', 'x2', 'x3', 'x4', 'x6', 

'x7', 'x8'] 
674.1190 0.4900 0.0437 84.2649 7.2181 

7 8 
['x1', 'x2', 'x3', 'x5', 'x6', 

'x7', 'x8'] 
657.1528 0.5028 0.0678 82.1441 7.0364 

7 8 
['x1', 'x2', 'x4', 'x5', 'x6', 

'x7', 'x8'] 
665.4490 0.4965 0.0560 83.1811 7.1253 

7 8 
['x1', 'x3', 'x4', 'x5', 'x6', 

'x7', 'x8'] 
656.2870 0.5035 0.0690 82.0359 7.0272 
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7 8 
['x2', 'x3', 'x4', 'x5', 'x6', 

'x7', 'x8'] 
726.0000 0.4507 -0.0299 90.7500 7.7736 

8 9 
['x1', 'x2', 'x3', 'x4', 'x5', 

'x6', 'x7', 'x8'] 
653.7500 0.5054 -0.0599 93.3929 9.0000 

 

Appendix 2 
Python Code 

 
Start.py 
import pandas as pd 
from tabulate import tabulate 
import matplotlib.pyplot as plt 
import numpy as np 
from ParametersEstimator import ParametersEstimator 
import BestRegressorFinder as bestregressor 
import ModelAdequacyChecker as modeladequacychecker 
from statsmodels.stats.outliers_influence import variance_inflation_factor 
 
def main(): 
    df = load_data() 
 
    #visualize original data 
    visualize_data(df) 
 
    #step# 1 
    print('Checking the model with all the regressors... section 6.1 of the report') 
    regressors = ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8'] 
    params_estimator = ParametersEstimator(df, regressors, 'y ~ C(x1) + x2 + x3 + x4 + x5 + x6 + x7 + x8') 
    params_estimator.do_parameter_estimations() 
    print('Model adequacy checking... Section 6.3 of the report') 
    modeladequacychecker.check_model_adequacy(params_estimator.regression_result) 
 
    # #step# 2 square root transformation 
    print('Square root transformation... section 6.4.1 of the report') 
    df1 = df.copy() 
    df1['y'] = (np.sqrt(df1['y'])) 
    regressors = ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8'] 
    params_estimator = ParametersEstimator(df1, regressors, 'y ~ C(x1) + x2 + x3 + x4 + x5 + x6 + x7 + x8') 
    params_estimator.do_parameter_estimations() 
    print('Model adequacy checking... Section 6.4.1 of the report') 
    modeladequacychecker.check_model_adequacy(params_estimator.regression_result) 
    # 
    # step# 2 log transformation 
    print('Log transformation... section 6.4.2 of the report') 
    df1 = df.copy() 
    df1['y'] = (np.log(df1['y'])) 
    regressors = ['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8'] 
    params_estimator = ParametersEstimator(df1, regressors, 'y ~ C(x1) + x2 + x3 + x4 + x5 + x6 + x7 + x8') 
    params_estimator.do_parameter_estimations() 
    modeladequacychecker.check_model_adequacy(params_estimator.regression_result) 
 
    #step# 3 Quadratric a) 
    print('Checking model with quadratric terms... section 6.4.3 of the report') 
    params_estimator = ParametersEstimator(df, regressors, 'y ~ C(x1) + x2*x2 + x3 + x4 + x5 + x6 + x7 + x8') 
    params_estimator.do_parameter_estimations() 
    print('Model adequacy checking... Section 6.4.2 of the report') 
    modeladequacychecker.check_model_adequacy(params_estimator.regression_result) 
 
    # step# 3 Quadratric b) 
    print('Checking model with quadratric terms... section 6.4.3 of the report') 
    params_estimator = ParametersEstimator(df, regressors, 'y ~ C(x1) + x2 + x3*x3 + x4 + x5 + x6 + x7 + x8') 
    params_estimator.do_parameter_estimations() 
    print('Model adequacy checking... Section 6.4.3 of the report') 
    modeladequacychecker.check_model_adequacy(params_estimator.regression_result) 
 
    # step# 4 Best regressors 
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    print('An attempt to get best set of regressors... section 6.5 of the report') 
    best_regressors = bestregressor.get_best_regressors(df, regressors) 
    print(tabulate(best_regressors, headers='keys', tablefmt='psql', showindex=False)) 
 
    # 
    regressors_sets_to_consider = [['x1', 'x3', 'x5'], ['x3', 'x5'], ['x5']] 
    for regressors_set in regressors_sets_to_consider: 
        print(tabulate(get_vif_values(df[regressors_set]), headers='keys', tablefmt='psql', showindex=False)) 
 
    ##Model validation split data into 75%-25% 
    print('Analysis on different combinations of best regressor sets... section 6.5.3 of the report') 
    split_at = int(len(df)*0.75) 
    estimation_df = df.sample(split_at, random_state=3) 
    prediction_df = pd.concat([df, estimation_df]).drop_duplicates(keep=False) 
 
    estimation_df = pd.DataFrame(data=estimation_df.values,columns=df.columns) 
    prediction_df = pd.DataFrame(data=prediction_df.values,columns=df.columns) 
 
    regressors_sets_to_consider = [['C(x1)','x3','x5'],['C(x1)','x3','x5','C(x1)*x3'], 
                                   ['C(x1)','x3','x5','C(x1)*x5'],['C(x1)','x3','x5','x3*x5']] 
    # 
    for regressors_set in regressors_sets_to_consider: 
        params_estimator = ParametersEstimator(estimation_df, regressors_set) 
        params_estimator.do_parameter_estimations() 
        print('Model adequacy checking for model {} ... Section 6.5.3 of the report'.format(regressors_set)) 
        modeladequacychecker.check_model_adequacy(params_estimator.regression_result) 
        PRESS, R_square_prediction = validate_model(prediction_df, params_estimator.regression_result); 
        print('PRESS Statistics = {} R_square_prediction = {}'.format(np.round(PRESS, 4), R_square_prediction)) 
 
    #residual analysis of the final model with complete data 
    print('Analysis on the final model ... section 6.5.3.1 of the report') 
    params_estimator = ParametersEstimator(df, regressors_sets_to_consider[2], 'y ~ C(x1) + x3 + x5 + C(x1) * x5') 
    params_estimator.do_parameter_estimations() 
    print('Model adequacy checking for the final model {} ... Section 6.5.3.2 of the 
report'.format(regressors_sets_to_consider[2])) 
    modeladequacychecker.check_model_adequacy(params_estimator.regression_result) 
    PRESS, R_square_prediction = validate_model(df, params_estimator.regression_result); 
    print('PRESS Statistics = {} R_square_prediction = {}'.format(np.round(PRESS, 4), R_square_prediction)) 
 
 
 
def validate_model(prediction_df,regression_result): 
 
    fitted_value_prediction_data_list = regression_result.predict(prediction_df) 
 
    PRESS = np.sum(np.square(prediction_df['y'] - fitted_value_prediction_data_list)) 
    y_bar = np.mean(prediction_df['y']) 
    SST = np.sum(np.square(prediction_df['y'] - y_bar)) 
    R_square_prediction = str(np.round((1 - (PRESS / SST)) * 100, 2)) + '%' 
    return PRESS, R_square_prediction 
 
def plot_y_x(x, y, xlabel, ylabel, title): 
    plt.figure(figsize=(8, 5)) 
    plt.plot(x, y, 'b.',markersize=10) 
    plt.xlabel(xlabel, fontsize=15) 
    plt.ylabel(ylabel, fontsize=15) 
    plt.title(title, fontsize=18) 
    plt.grid(True) 
 
def get_vif_values(features_df): 
    vif = pd.DataFrame() 
    if len(features_df.columns)>1: 
        vif["VIF Factor"] = [variance_inflation_factor(features_df.values, i) for i in range(features_df.shape[1])] 
        vif["features"] = features_df.columns 
    return vif 
 
def visualize_data(df): 
    plot_y_x(df['x1'], df['y'],'x1','y','x1 vs y') 
    plot_y_x(df['x2'], df['y'],'x2','y','x2 vs y') 
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    plot_y_x(df['x3'], df['y'],'x3','y','x3 vs y') 
    plot_y_x(df['x4'], df['y'],'x4','y','x4 vs y') 
 
    plot_y_x(df['x5'], df['y'], 'x5', 'y', 'x5 vs y') 
    plot_y_x(df['x6'], df['y'], 'x6', 'y', 'x6 vs y') 
    plot_y_x(df['x7'], df['y'], 'x7', 'y', 'x7 vs y') 
    plot_y_x(df['x8'], df['y'], 'x8', 'y', 'x8 vs y') 
 
    plt.show() 
 
def load_data(): 
    # Creating pd DataFrames 
    # Table B.18 
    y = [343, 356, 344, 356, 352, 361, 372, 355, 375, 359, 364, 357, 368, 360, 372, 352] 
    x1 = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] 
    x2 = [52.8, 52.8, 50.0, 50.0, 47.2, 47.2, 47.0, 47.0, 48.3, 48.3, 44.7, 44.7, 55.7, 55.7, 52.8, 52.8] 
    x3 = [811.7, 811.7, 821.3, 821.3, 832.0, 832.0, 831.3, 831.3, 836.8, 836.8, 808.3, 808.3, 808.7, 808.7, 813.2, 
          813.2] 
    x4 = [2.11, 2.11, 2.11, 2.11, 2.09, 2.09, 2.26, 2.26, 2.47, 2.47, 1.41, 1.41, 1.44, 1.44, 1.96, 1.96] 
    x5 = [220, 220, 223, 223, 221, 221, 190, 190, 180, 180, 180, 180, 176, 176, 175, 175] 
    x6 = [261, 261, 260, 260, 261, 261, 323, 323, 364, 364, 300, 300, 299, 299, 301, 301] 
    x7 = [87, 87, 87, 87, 92, 92, 75, 75, 71, 71, 64, 64, 64, 64, 75, 75] 
    x8 = [1.8, 1.8, 16.6, 16.6, 23.0, 23.0, 25.1, 25.1, 26.1, 26.1, 20.0, 20.0, 20.5, 20.5, 17.3, 17.3] 
 
    data = {'x1': x1, 'x2': x2, 'x3': x3, 'x4': x4, 
            'x5': x5, 'x6': x6, 'x7': x7, 'x8': x8, 
            'y': y} 
    df = pd.DataFrame(data=data) 
 
    print(tabulate(df, headers='keys', tablefmt='psql', showindex=False)) 
 
    return df 
 
 
if __name__ == "__main__": 
    main() 

 
ParametersEstimator.py 
 
from statsmodels.formula.api import ols 
import numpy as np 
 
 
class ParametersEstimator: 
    'default constructor' 
    def __init__(self, df, regressors, formula=''): 
        self.alpha = 0.05 
        self.df = df 
        self.regressors = regressors 
        if len(formula) == 0: 
            self.formula = formula = 'y ~ ' + ('+'.join(list(regressors))) 
        self.formula = formula 
        self.regression_result = self.fit_selected_model(df,regressors,formula) 
 
    def do_parameter_estimations(self): 
 
        for counter in range(1,len(self.regression_result.pvalues)): 
        #for regressor in self.regressors: 
            pvalue = np.round(self.regression_result.pvalues[counter], 4) 
            tvalue = np.round(self.regression_result.tvalues[counter], 4) 
 
            if pvalue > self.alpha: 
                print('tvalue = {}, pvalue = {}. {} is not significant.'.format(tvalue, pvalue, 
[self.regressors[counter-1]])) 
            else: 
                print('tvalue = {}, pvalue = {}. {} is significant.'.format(tvalue, pvalue, 
[self.regressors[counter-1]])) 
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    def fit_selected_model(self, df, regressors, formula=''): 
        if len(formula) == 0: 
            formula = 'y ~ ' + ('+'.join(list(regressors))) 
        regression_result = ols(formula=formula, data=df).fit() 
        print(regression_result.summary(xname=['Intercept']+regressors)) 
        return regression_result 

 
 
ModelAdequacyChecker.py 
 
import pandas as pd 
from tabulate import tabulate 
import matplotlib.pyplot as plt 
import statsmodels.api as sm 
 
def check_model_adequacy(regression_result): 
    plot_residuals(regression_result) 
 
def plot_residuals(regression_result): 
    # Construct a normal probability plot of the residuals. Does there seem to be any 
    # problem with the normality assumption? 
    plot_normal_probability(regression_result) 
 
    # Construct and interpret a plot of the residuals versus the predicted response. 
    # Fitted vs. residuals 
    plot_fitted_vs_residual(regression_result.fittedvalues, regression_result.resid, 'Fitted values', 
                            'Residuals', 'Fitted vs. Residuals plot') 
 
    # Compute the studentized residuals and the R - student residuals for this model. 
    regression_influence = regression_result.get_influence() 
    studentized_residuals = regression_influence.resid_studentized 
    r_student_residuals = regression_influence.resid_studentized_external 
 
    # Compute all other residuals(e.g., PRESS) 
    press_residuals = regression_influence.resid_studentized_external 
 
    residuals_data = { 
        'Studentized Residuals': studentized_residuals, 
        'R-student Residuals': r_student_residuals, 
        'Press Residuals': press_residuals 
    } 
    residuals_df = pd.DataFrame(data=residuals_data) 
    # start the dataframe index 1 for visual purpose 
    residuals_df.index += 1 
    print(tabulate(residuals_df, headers='keys', tablefmt='psql', showindex=True)) 
 
    # Fitted vs. studentized residuals 
    plot_fitted_vs_residual(regression_result.fittedvalues, studentized_residuals, 'Fitted values', 
                            'Studentized Residuals', 'Fitted vs. Studentized Residuals plot') 
    # Fitted vs. r-studentized residuals 
    plot_fitted_vs_residual(regression_result.fittedvalues, r_student_residuals, 'Fitted values', 
                            'R Student Residuals', 'Fitted vs. R Student Residuals plot') 
    # Fitted vs. press residuals 
    plot_fitted_vs_residual(regression_result.fittedvalues, press_residuals, 'Fitted values', 
                            'Press Residuals', 'Fitted vs. Press Residuals plot') 
 
    plt.show() 
 
def plot_normal_probability(regression): 
    # Histogram of normalized residuals 
    plt.figure(figsize=(8, 5)) 
    plt.hist(regression.resid_pearson, bins=20, edgecolor='k') 
    plt.xlabel('Normalized residuals', fontsize=15) 
    plt.title("Histogram of normalized residuals", fontsize=18) 
 
    # Q - Q plot of the residuals 
    plt.figure(figsize=(8, 5)) 
    probplot = sm.ProbPlot(regression.resid, fit='True') 
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    fig = probplot.qqplot(line='45') 
    plt.title('Q-Q plot of normalized residuals') 
    plt.grid(True) 
 
def plot_fitted_vs_residual(x, y, xlabel, ylabel, title): 
    plt.figure(figsize=(8, 5)) 
    plt.scatter(x=x, y=y, edgecolor='k') 
    xmin = min(x) 
    xmax = max(x) 
    plt.hlines(y=0, xmin=xmin, xmax=xmax, color='red', linestyle='-', lw=2) 
    plt.xlabel(xlabel, fontsize=15) 
    plt.ylabel(ylabel, fontsize=15) 
    plt.title(title, fontsize=18) 
    plt.grid(True) 

 
BestRegressorFinder.py 
 
import itertools 
from tabulate import tabulate 
from statsmodels.formula.api import ols 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from scipy import stats 
 
 
def get_best_regressors(df,regressors): 
 
    X = df.iloc[:, :-1] 
    y = df.iloc[:, -1:] 
 
    best_subset_selection(df,regressors) 
 
    alpha = 0.25 
    regressors_to_retain1 = stepwise_forward_selection(df,regressors, alpha) 
 
    alpha = 0.10 
    regressors_to_retain2 = stepwise_backward_elemination(df,regressors, alpha) 
 
    alpha = 0.15 
    regressors_to_retain3 = stepwise_regression(df,regressors, alpha) 
 
    return pd.DataFrame({ 'forward_selection': [','.join(regressors_to_retain1)], 
             'backward_elemination': [','.join(regressors_to_retain2)], 
             'stepwise_regression': [','.join(regressors_to_retain3)], 
             }) 
 
 
def fit_selected_model(df, regressors): 
    formula = 'y ~ ' + ('+'.join(list(regressors))) 
    regression_result = ols(formula=formula, data=df).fit() 
    equation = 'y = ' + str(np.round(regression_result.params['Intercept'], 4)) 
    for reg in regressors: 
        coefficient = np.round(regression_result.params[reg], 4) 
        if coefficient > 0: 
            equation += '+' + str(coefficient) + reg 
        else: 
            equation += str(coefficient) + reg 
    rsquare_percentage = str(np.round(regression_result.rsquared * 100, 2)) + '%' 
    return equation, rsquare_percentage 
 
 
def stepwise_regression(df,all_regressors, threshold): 
    y = df['y'] 
    included = [] 
 
    while True: 
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        changed = False 
        n = len(y) 
        # forward step 
        excluded = list(set(all_regressors) - set(included)) 
        new_tval = pd.Series(index=excluded, dtype=float) 
        included_reg_tval = pd.Series(index=excluded, dtype=float) 
        models_df = pd.DataFrame(columns=['regressors', 'model']) 
        regressors_under_test_list, models_list = [], [] 
 
        for new_column in excluded: 
            regressors_under_test = included + [new_column] 
            regressors = '+'.join(regressors_under_test) 
            formula = 'y ~ ' + regressors 
            if ('x1*x2' in regressors_under_test) and \ 
                (('x1' not in regressors_under_test) or ('x2' not in regressors_under_test)): 
                continue; 
            model = ols(formula=formula, data=df).fit() 
            new_tval[new_column] = np.abs(model.tvalues[new_column.replace('*', ':')]) 
            for reg in included: 
                included_reg_tval[reg] = np.abs(model.tvalues[new_column.replace('*', ':')]) 
 
            regressors_under_test_list.append(','.join(regressors_under_test)) 
            models_list.append(model) 
 
        models_df['regressors'] = regressors_under_test_list; 
        models_df['model'] = models_list; 
 
        best_tval = new_tval.max() 
        regressors_without_intercept = model.model.exog_names[1:] 
        dof = n - (len(regressors_without_intercept) + 1) 
        t_in = np.abs(np.round(stats.t.ppf(threshold / 2, dof), 4)) 
        t_out = np.abs(np.round(stats.t.ppf(threshold / 2, dof), 4)) 
 
        if best_tval > t_in: 
            best_feature = new_tval.index[new_tval.argmax()] 
            for reg in included: 
                regressors_under_test = ','.join(included + [best_feature]) 
                index = models_df.index[models_df['regressors'] == regressors_under_test] 
                model_info_for_regressors_under_test = models_df.loc[index]['model'].values[0] 
                if np.abs(model_info_for_regressors_under_test.tvalues[reg]) < t_out: 
                    included.remove(reg) 
            included.append(best_feature) 
            changed = True 
        if not changed: 
            break 
    return included 
 
 
def stepwise_backward_elemination(df,all_regressors, threshold_out): 
    y = df['y'] 
    included = all_regressors 
    K = len(included) 
 
    while True: 
        changed = False 
        # backward step 
        regressors = '+'.join(included) 
        formula = 'y ~ ' + regressors 
 
        model = ols(formula=formula, data=df).fit() 
        r = K - len(included) 
        # model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit() 
        p = K + 1 - r 
        n = len(y) 
        dof = n - p 
        t_out = np.abs(np.round(stats.t.ppf(threshold_out / 2, dof), 4)) 
        # use all coefs except intercept 
        tvalues = pd.Series(index=included, dtype=float) 
        for reg in included: 
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            tvalues[reg] = (np.abs(model.tvalues.iloc[1:][reg.replace('*', ':')])) 
        worst_tval = tvalues.min() 
        if worst_tval < t_out: 
            changed = True 
            worst_feature = tvalues.index[tvalues.argmin()] 
            included.remove(worst_feature) 
        if not changed: 
            break 
    return included 
 
 
def stepwise_forward_selection(df,all_regressors, threshold_in): 
    y = df['y'] 
    included = [] 
 
    while True: 
        changed = False 
        n = len(y) 
        # forward step 
        excluded = list(set(all_regressors) - set(included)) 
        new_tval = pd.Series(index=excluded, dtype=float) 
        for new_column in excluded: 
            regressor_set = included + [new_column] 
            if ('x1*x2' in regressor_set) and (('x1' not in regressor_set) or ('x2' not in regressor_set)): 
                continue; 
            regressors = '+'.join(regressor_set) 
            formula = 'y ~ ' + regressors 
            model = ols(formula=formula, data=df).fit() 
            new_tval[new_column] = np.abs(model.tvalues[new_column.replace('*', ':')]) 
        best_tval = new_tval.max() 
        regressors_without_intercept = model.model.exog_names[1:] 
        dof = n - (len(regressors_without_intercept) + 1) 
        t_in = np.abs(np.round(stats.t.ppf(threshold_in / 2, dof), 4)) 
 
        if best_tval > t_in: 
            best_feature = new_tval.index[new_tval.argmax()] 
            included.append(best_feature) 
            changed = True 
        if not changed: 
            break 
    return included 
 
 
def best_subset_selection(df,complete_regressors): 
    X = df.iloc[:, :-1] 
    y = df.iloc[:, -1:] 
    K = len(X.columns)  # number of regressors 
    n = len(y)  # number of observations 
 
    SSRes_list, R_squared_list, feature_list, MSRes_list = [], [], [], [] 
    Adj_R_squared_list, num_regressors = [], [] 
 
    for r in range(1, len(complete_regressors) + 1): 
        for regressor_set in itertools.combinations(complete_regressors, r): 
            regressors = '+'.join(list(regressor_set)) 
            formula = 'y ~ ' + regressors 
            regression_model = ols(formula=formula, data=df).fit() 
            p = len(regressor_set) + 1 
            R_squared_list.append(regression_model.rsquared) 
            r_sqr_adj = 1 - ((n - 1) / (n - p)) * (1 - regression_model.rsquared) 
            Adj_R_squared_list.append(r_sqr_adj) 
            SSRes_list.append(regression_model.ssr) 
            feature_list.append(list(regressor_set)) 
            MSRes_list.append(regression_model.ssr / (n - p)) 
            num_regressors.append(len(regressor_set)) 
 
    p_list = np.array(num_regressors) + 1 
    # lets take sigmasquare MSRes of full model, last element in the list 
    hat_sigma_squared = MSRes_list[len(MSRes_list) - 1]  # same as np.min(SSRes_list)/(n - K - 1) 
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    C_p_list = SSRes_list / hat_sigma_squared - n + 2 * p_list 
 
    regression_summary_df = pd.DataFrame( 
        {'Number_of_Regressors': num_regressors, 
         'p': p_list, 
         'Regressors_in_the_model': feature_list, 
         'SSRes_p': SSRes_list, 
         'R_squared_p': R_squared_list, 
         'Adj_R_square_p': Adj_R_squared_list, 
         'MSRes_p': MSRes_list, 
         'C_p': C_p_list 
         }) 
 
    print(tabulate(regression_summary_df, headers='keys', tablefmt='psql', showindex=False)) 
 
    # last element contains full model information 
    R_K_plus_1_Square = regression_summary_df['R_squared_p'][regression_summary_df.shape[0] - 1] 
 
    alpha = 0.05 
    F = np.round(stats.f.ppf(q=1 - alpha, dfn=K, dfd=(n - K - 1)), 4) 
    d_alpha_n_k = K * F / (n - K - 1) 
 
    R_0_Square = np.round(1 - (1 - R_K_plus_1_Square) * (1 + d_alpha_n_k), 4) 
 
    regression_summary_df.where(regression_summary_df['R_squared_p'] > R_0_Square)[ 
        ['Regressors_in_the_model', 'R_squared_p']].dropna() 
 
    # p vs R square 
    plot_figure(regression_summary_df['p'], regression_summary_df['R_squared_p'], 
                regression_summary_df['Regressors_in_the_model'], 'p', 'R_squared_p', 
                'p Vs R_squared_p - Best subset selection') 
    # p vs MSRes 
    plot_figure(regression_summary_df['p'], regression_summary_df['MSRes_p'], 
                regression_summary_df['Regressors_in_the_model'], 'p', 'MSRes_p', 
                'p Vs MSRes_p - Best subset selection') 
    # p vs Cp 
    plot_Cp_vs_p_figure(regression_summary_df) 
 
    plt.show() 
 
 
def plot_figure(x, y, annotation_list, xlabel, ylabel, title): 
    fig = plt.figure(figsize=(10, 8)) 
    ax = fig.add_subplot(111) 
 
    ax.scatter(x, y, color='b') 
    for i, txt in enumerate(annotation_list): 
        ax.annotate(txt, (x[i], y[i])) 
 
    ax.set_xlabel(xlabel) 
    ax.set_ylabel(ylabel) 
    ax.set_title(title) 
 
def plot_Cp_vs_p_figure(regression_summary_df): 
    fig = plt.figure(figsize=(15, 12)) 
    f, (ax, ax2) = plt.subplots(2,1,sharex=True) 
 
 
    #top part 
    uppper_plot_data = regression_summary_df.where(regression_summary_df['C_p'] > max(regression_summary_df.p))\ 
                       [['p', 'C_p']].dropna() 
    ax.scatter(uppper_plot_data['p'], uppper_plot_data['C_p'], color='b') 
    for i, txt in enumerate(regression_summary_df.Regressors_in_the_model): 
         ax.annotate(txt, (regression_summary_df.p[i], regression_summary_df.C_p[i])) 
    ax.set_xlim(0) 
    ax.set_ylim([max(regression_summary_df.p),max(regression_summary_df.C_p)]) 
    ax.set_ylabel('Cp') 
    ax.set_title('p Vs Cp - Best subset selection') 
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    #bottom part 
    lower_plot_data = regression_summary_df.where(regression_summary_df['C_p'] <= max(regression_summary_df.p)) \ 
        [['p', 'C_p']].dropna() 
    ax2.scatter(lower_plot_data['p'], lower_plot_data['C_p'], color='b') 
    for i, txt in enumerate(regression_summary_df.Regressors_in_the_model): 
        ax2.annotate(txt, (regression_summary_df.p[i], regression_summary_df.C_p[i])) 
    cp_p_line_data_p = [0,max(regression_summary_df.p)] 
    cp_p_line_data_cp = [0, regression_summary_df.C_p[len(regression_summary_df.C_p) - 1]] #cp of full model 
    ax2.plot(cp_p_line_data_p, cp_p_line_data_cp,  color='r', label='Cp = p') 
    ax2.set_xlim([0,max(regression_summary_df.p)+1]) 
    ax2.set_ylim([0,max(regression_summary_df.p)]) 
    ax2.set_xlabel('p') 
    ax2.set_ylabel('Cp') 
    ax2.legend(loc='upper left') 
 
    # hide the spines between ax and ax2 
    ax.spines['bottom'].set_visible(False) 
    ax2.spines['top'].set_visible(False) 
    ax.xaxis.tick_top() 
    ax.tick_params(labeltop=False) 
    ax2.xaxis.tick_bottom() 

 


